Skip to content

Merton Jump-Diffusion Model#

Bases: BaseModel

Merton Jump-Diffusion model, implemented as a Poisson-weighted sum of BSM prices.

Source code in src/quantfin/models/merton_jump.py
class MertonJumpModel(BaseModel):
    """
    Merton Jump-Diffusion model, implemented as a Poisson-weighted sum of BSM prices.
    """

    name: str = "Merton Jump-Diffusion"
    supports_cf: bool = True
    has_closed_form: bool = True
    supports_sde: bool = True
    has_jumps: bool = True

    default_params = {
        "sigma": 0.2,
        "lambda": 0.5,
        "mu_j": -0.1,
        "sigma_j": 0.15,
        "max_sum_terms": 100,
    }
    param_defs = {
        "sigma": {
            "label": "Volatility",
            "default": 0.2,
            "min": 0.01,
            "max": 1.0,
            "step": 0.01,
        },
        "lambda": {
            "label": "Jump Intensity",
            "default": 0.5,
            "min": 0.0,
            "max": 5.0,
            "step": 0.1,
        },
        "mu_j": {
            "label": "Mean Jump",
            "default": -0.1,
            "min": -1.0,
            "max": 1.0,
            "step": 0.05,
        },
        "sigma_j": {
            "label": "Jump Vol",
            "default": 0.15,
            "min": 0.01,
            "max": 1.0,
            "step": 0.01,
        },
    }

    def __init__(self, params: dict[str, float]):
        """
        Initializes the Merton Jump-Diffusion model.
        Uses BSMModel instance for the core diffusion

        Parameters
        ----------
        params : dict[str, float]
            A dictionary of model parameters.
        """
        super().__init__(params)
        self.bsm_solver = BSMModel(params={"sigma": self.params["sigma"]})

    def _validate_params(self) -> None:
        """Validates parameters for diffusion and jump components."""
        p = self.params
        req = ["lambda", "mu_j", "sigma_j", "sigma", "max_sum_terms"]
        ParamValidator.require(p, req, model=self.name)
        ParamValidator.positive(
            p, ["lambda", "sigma_j", "sigma", "max_sum_terms"], model=self.name
        )

    def _closed_form_impl(
        self,
        *,
        spot: float,
        strike: float,
        r: float,
        q: float,
        t: float,
        call: bool = True,
    ) -> float:
        """
        Merton's closed-form solution as a sum of BSM prices.

        Parameters
        ----------
        spot : float
            The current price of the underlying asset.
        strike : float
            The strike price of the option.
        r : float
            The continuously compounded risk-free rate.
        q : float
            The continuously compounded dividend yield.
        t : float
            The time to maturity of the option, in years.
        call : bool, optional
            True for a call option, False for a put. Defaults to True.

        Returns
        -------
        float
            The price of the European option.
        """
        lambda_ = self.params["lambda"]
        mu_j = self.params["mu_j"]
        sigma_j = self.params["sigma_j"]
        max_sum_terms = int(self.params["max_sum_terms"])

        k = math.exp(mu_j + 0.5 * sigma_j**2) - 1
        lambda_prime = lambda_ * (1 + k)
        y_mul = lambda_prime * t

        interval = np.arange(max_sum_terms)
        weights = np.exp(-y_mul) * (y_mul**interval) / factorial(interval)

        r_n = r - lambda_ * k + (interval * (mu_j + 0.5 * sigma_j**2)) / t
        sigma_n_sq = self.params["sigma"] ** 2 + (interval * sigma_j**2) / t
        sigma_n = np.sqrt(np.maximum(sigma_n_sq, 1e-12))

        total_price = 0.0
        for i in range(max_sum_terms):
            # Terminate sum early if weights become negligible
            if weights[i] < 1e-12 and i > lambda_prime * t:
                break

            temp_bsm_solver = self.bsm_solver.with_params(sigma=sigma_n[i])

            price_term = temp_bsm_solver.price_closed_form(
                spot=spot, strike=strike, r=r_n[i], q=q, t=t, call=call
            )
            total_price += weights[i] * price_term

        return total_price

    def _cf_impl(
        self,
        *,
        t: float,
        spot: float,
        r: float,
        q: float,
        **_: Any,
    ) -> CF:
        """
        Merton characteristic function for the log-spot price log(S_t).

        Parameters
        ----------
        t : float
            The time to maturity of the option, in years.
        spot : float
            The current price of the underlying asset.
        r : float
            The continuously compounded risk-free rate.
        q : float
            The continuously compounded dividend yield.

        Returns
        -------
        CF
            The characteristic function.
        """
        p = self.params
        sigma, lambda_, mu_j, sigma_j = p["sigma"], p["lambda"], p["mu_j"], p["sigma_j"]
        drift = r - q - 0.5 * sigma**2
        compensator = lambda_ * (np.exp(mu_j + 0.5 * sigma_j**2) - 1)

        def phi(u: np.ndarray | complex) -> np.ndarray | complex:
            bsm_part = (
                1j * u * (np.log(spot) + (drift - compensator) * t)
                - 0.5 * u**2 * sigma**2 * t
            )
            jump_part = (
                lambda_ * t * (np.exp(1j * u * mu_j - 0.5 * u**2 * sigma_j**2) - 1)
            )
            return np.exp(bsm_part + jump_part)

        return phi

    def _sde_impl(self):
        p = self.params
        sigma, mu_j, sigma_j, lambda_ = p["sigma"], p["mu_j"], p["sigma_j"], p["lambda"]
        compensator = lambda_ * (np.exp(mu_j + 0.5 * sigma_j**2) - 1)

        def stepper(
            log_s_t: np.ndarray,
            r: float,
            q: float,
            dt: float,
            dw_t: np.ndarray,
            jump_counts: np.ndarray,
            rng: np.random.Generator,
        ) -> np.ndarray:
            drift_term = (r - q - 0.5 * sigma**2 - compensator) * dt
            next_log_s = log_s_t + drift_term + sigma * dw_t
            paths_with_jumps = np.where(jump_counts > 0)[0]
            for path_idx in paths_with_jumps:
                num_jumps_on_path = jump_counts[path_idx]
                total_jump_size = np.sum(
                    rng.normal(loc=mu_j, scale=sigma_j, size=num_jumps_on_path)
                )
                next_log_s[path_idx] += total_jump_size
            return next_log_s

        return stepper

    def _pde_impl(self) -> Any:
        raise NotImplementedError(f"{self.name} PDE not implemented")

__init__(params: dict[str, float]) #

Initializes the Merton Jump-Diffusion model. Uses BSMModel instance for the core diffusion

Parameters:

Name Type Description Default
params dict[str, float]

A dictionary of model parameters.

required
Source code in src/quantfin/models/merton_jump.py
def __init__(self, params: dict[str, float]):
    """
    Initializes the Merton Jump-Diffusion model.
    Uses BSMModel instance for the core diffusion

    Parameters
    ----------
    params : dict[str, float]
        A dictionary of model parameters.
    """
    super().__init__(params)
    self.bsm_solver = BSMModel(params={"sigma": self.params["sigma"]})